#52273

#52273: Инвестор включил в портфель n акций и использует модель У. Шарпа. Для оценки риска этого портфеля ему необходимо вычислить:

Инвестор включил в портфель n акций и использует модель У. Шарпа. Для оценки риска этого портфеля ему необходимо вычислить:
Варианты ответа:
  • (2n + 1) параметр;
  • (2n + 2) параметра;
  • (n +2) параметра;
  • (3n + 2) параметра;

Данная дисциплина изучает фундаментальные принципы и методы анализа данных, включая сбор, обработку и интерпретацию информации. Рассматриваются современные инструменты и технологии, применяемые в машинном обучении, статистике и визуализации данных. Особое внимание уделяется практическому применению знаний для решения реальных задач в различных областях. Курс развивает навыки критического мышления и работы с большими массивами информации, что необходимо для успешной деятельности в условиях цифровой экономики.

Данная дисциплина изучает фундаментальные принципы и методы анализа данных, включая сбор, обработку и интерпретацию информации. Рассматриваются современные инструменты и технологии, применяемые в машинном обучении, статистике и визуализации данных. Особое внимание уделяется практическому применению знаний для решения реальных задач в различных областях. Курс развивает навыки критического мышления и работы с большими массивами информации, что необходимо для успешной деятельности в условиях цифровой экономики.

Похожие вопросы по дисциплине

📚 Похожие вопросы по этой дисциплине
Инвестор использует модель У. Шарпа. Тогда для построения ГЭП ему необходимо вычислять дисперсии доходности каждой акции портфеля: Инвестор 10.10.05г. формирует портфель из купонных облигаций на срок до 10.10.07г. В портфель включается облигация, срок погашения которой 05.06.06г. От этой облигации инвестор намерен получить доход за счет: Сокращение объемов вычислений в модели У. Шарпа объясняется тем, что: Известно, что в модели У. Шарпа ожидаемая доходность портфеля содержит две составляющие. Теоретически может возникнуть ситуация, при которой вторая составляющая доходности превзойдет по абсолютной величина первую составляющую доходности: Для придания компактности формулам, с помощью которых строится граница эффективных портфелей, У. Шарп предложил ввести понятие (n+1)-ой акции портфеля. Под этой акцией понимается: