#1244519
#1244519: Вы являетесь тренером спортивной команды и хотите научить свою команду исполнять определенную комбинацию движений. Вы решили использовать метод обучения с подкреплением, чтобы максимизировать результаты. Вам известно, что тренировочный процесс будет состоять из трех этапов: объяснение комбинации движений, демонстрация и исполнение каждым членом команды, а после каждой попытки команда будет получать положительное или отрицательное подкрепление в зависимости от того, насколько близко они выполнили комбинацию. Какое подкрепление (вознаграждение или штраф) следует использовать после каждой попытки выполнения комбинации движений?
Вы являетесь тренером спортивной команды и хотите научить свою команду исполнять определенную комбинацию движений. Вы решили использовать метод обучения с подкреплением, чтобы максимизировать результаты. Вам известно, что тренировочный процесс будет состоять из трех этапов: объяснение комбинации движений, демонстрация и исполнение каждым членом команды, а после каждой попытки команда будет получать положительное или отрицательное подкрепление в зависимости от того, насколько близко они выполнили комбинацию. Какое подкрепление (вознаграждение или штраф) следует использовать после каждой попытки выполнения комбинации движений?
Варианты ответа:
- Увеличивать время тренировки каждый раз, когда команда нестандартно выполняет комбинацию движений.
- Давать каждому члену команды небольшую премию в случае успешного выполнения комбинации дижений.
- Высказывать словесную похвалу и давать поощрение всей команде в случае правильного выполнения комбинации движений.
🔒 Ответ появится после оплаты
Курс посвящен изучению принципов машинного обучения, включая архитектуру и функционирование нейронных сетей. Студенты освоят методы обработки данных, алгоритмы обучения моделей и их применение в создании интеллектуальных систем. Особое внимание уделяется практическому использованию технологий ИИ для автоматизации задач, анализа больших данных и разработки инновационных решений в различных сферах, от медицины до промышленности.
Курс посвящен изучению принципов машинного обучения, включая архитектуру и функционирование нейронных сетей. Студенты освоят методы обработки данных, алгоритмы обучения моделей и их применение в создании интеллектуальных систем. Особое внимание уделяется практическому использованию технологий ИИ для автоматизации задач, анализа больших данных и разработки инновационных решений в различных сферах, от медицины до промышленности.